

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2010

PMT

CH1

SECTION A

1.	(i)	C	[1]
	(ii)	0.120 g	[1]
2.	(i)	C_2N_2	[1]
	(ii)	CN	[1]
3.	(i)	79 and 81	[1]
	(ii)	142	[1]
4.	D		[1]
5.	(i)	100	[1]
	(ii)	142.5 / 143 kg	[1]
6.	В		[1]

Total [10]

PMT

SECTION B

7.	(a)	(i) A low (acce)	A lower pressure gives a reduced equilibrium yield / less ammonia (accept – the reaction rate is slower)					
		(ii) The p and h	The position of equilibrium will shift to the right (1) as more nitroge and hydrogen react to restore the position of equilibrium. (1)					
		(iii) Unch	anged			[1]		
	(b)	(i) ammo	onia 17.03 (g)	ammonium sulfate	132.2 (g)	[1]		
		(1) molar ratio 2 : 1 (1) 2×17.02 tennes ammonia give 122.2 tennes of ammonium sulfate (1)						
		2×17.05 tonnes animonia give 152.2 tonnes of animonium surface (1)						
		66.1 ((tonnes) (1)			[3]		
	(c)	The pH scale is a measure of acidity/alkalinity (1)						
		values below 7 are acidic / above 7 are alkaline / pH 7 is neutral / pH 6 is a weak acid (1) [2]						
	(d)	Number of moles of ammonium nitrate $=$ $\frac{4 \times 10^8}{80} = 5 \times 10^6 / 5000000$ (1)						
		Energy produced = $296 \times 5 \times 10^6 = 1.48 \times 10^9 \text{ (kJ)}$ (1) [2]						
	(e)	(i) It is e the pl	xothermic becaus atinum wire, keep	e the heat evolved mai bing it red-hot (and mai	ntains the temperate	ure of on) [1]		
		(ii) A rea	ction where the ca	atalyst is in a different	(physical) state to the	he		

(ii) A reaction where the catalyst is in a different (physical) state to the reactants / products [1]

Total [14]

Progress of the reaction

[2]

9. (a) (i) I N (1) the yield is 75%, as for L, but only water is formed (1) [2]

II e.g. use renewable energy resources keep energy use to a minimum/low temperature/low pressure use the most effective catalyst use non-toxic materials wherever possible the co-products should be non-toxic / or capable of being converted to non-toxic materials use renewable feedstocks/sustainable feedstocks re-use / recycle waste product 'high atom economy'

(ii)
$$0.0 + \Delta H = -400 + (-858)$$
 (1)
 $\Delta H = -1258 \text{ kJ mol}^{-1}$ (1) [2]

(b) Bonds broken = 3748 kJ (1) Bonds made = 4824 kJ (1)

$$\Delta H = \Sigma$$
 bonds broken - Σ bonds made (1)
= 3748 - 4824 = -1076 kJ mol⁻¹ (1) [4]

- (c) (i) When more carbon dioxide dissolves in sea water the position of equilibrium for the first equation is moved to the right producing more H^+ (and more HCO_3^-) ions (1) making the water more acidic / pH decreases (1) [2]
 - (ii) The concentration of carbonate ions $/ \text{CO}_3^{2-}$ will decrease [1]
- (d) Solubility is 1.45 g dm⁻³ (1) Concentration of carbon dioxide = $\frac{1.45}{M_r} = \frac{1.45}{44} = 0.033 \text{ (mol dm}^{-3}\text{)}$ (1)

[2]

Total [15]

10. (i) 0.20/12.5 = 0.016 (1) mol dm⁻³ min⁻¹ (1) [2]
(ii) As the reaction proceeds the rate becomes less / reaction slows down (1) As the concentration of the reactant becomes smaller (1) At the beginning of the reaction there is more chance of a successful collision

At the beginning of the reaction there is more chance of a successful collision (hence rate is faster) (1)

The collision rate becomes slower as the reactant is used up (1)

Text is legible; spelling is accurate and its meaning is clear, and punctuation and grammar are correct. QWC (1) The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter. QWC (1)

PMT

(iii) I Accept values between 0.30 and 0.65 (mol
$$dm^{-3}$$
) [1]

II The final concentration would be the same (1) as a catalyst does not affect the overall yield (1) [2]

(iv) 1 mole of the solvent gives 1 mole of the acid \therefore Number of moles of the solvent **A** is also 0.650 (1)

$$M_r = \underline{\text{mass}}_{\text{number of moles}} = \underline{48.1}_{0.650} = 74 \quad (1)$$
[2]

Total [13]

11. To make sure that the potassium carbonate/soluble substances had (a) (i) dissolved [1] Filtrate added to a 250 cm^3 volumetric flask (1) (ii) Use of a funnel (1) Mention of washing out original vessel etc. (1) Made up to the mark (with distilled water) (1) Shaken/inverted (1) Any 4 points [4] $24.65 \,(\text{cm}^3)$ (iii) Ι [1] II Any 5 from 25.00 cm^3 of the potassium carbonate solution **pipetted** into a conical flask (1) (A few drops of) indicator added (1) Titrate (with the acid) until the indicator just (1) turns pink (1) Shake/swirl/mix (1) Reads burette before and after (1) Wash sides with distilled/deionised water (1) Organisation of information clearly and coherently; using specialist vocabulary where appropriate QWC (1) [6]

(b) (i)
$$M_r$$
 of potassium carbonate 138.2 (1)

% potassium =
$$\frac{78.2 \times 100}{138.2}$$
 (1) = 56.6 (1) [2]

- (ii) The relative (molecular) mass of the hydrate is higher (than the anhydrous salt) but a 'molecule' still only contains two potassium 'atoms' [1]
- (c) e.g. wood needs to be burnt, forming carbon dioxide (a greenhouse gas)/ deforestation [1]

Total [16]